วันอังคารที่ 1 เมษายน พ.ศ. 2557

Projectile motion


Main Menu

Physics High School
# h2phyt1 - Projectile motion 

A stone is thrown from the edge of a vertical cliff with a velocity of 50 m•s -1
at an angle tan-1

7
24
  above the horizontal.    The stone strikes the sea at
a point 240 m from the foot of the cliff.    Find the time for which the stone
is in the air and the height of the cliff.




Strategy - the rule "Must have" of Mr.Zhang ®

1. Convert tan-1


7

24
to be sinθ and cosθ 



2. Formulae : Sy = vyt +


1

2
gt2 (vertical) → (1)
S x= vxt (horizontal) → (2)
Horizontal motion (time) = Vertical motion (time)

Solution

Compute the time to find the height
∵   tan-1

7
24
Therefore,tanθ=

7
24
,  sinθ=

7
25
,  cosθ=

24
25
Horizontal motion from equation (2);
S x=vxt
S x=vxcosθt
240 m = 50 m•s-1

24
25
t
= 5 s
We bring the horizontal time to calculate the vertical
motion to get the height value.
Sy = vyt +


1

2
gt2  → (1)
Sy = 50 m•s-1sinθ(5) +

1
2
(-9.8 m•s-2)(52)
Gravitational against downward direction of the earth,
therefore, we take the minus sign.
-h = 50 m•s-1

7
25
(5) +

1
2
(-9.8 m•s-2)(52)
Displacement direction required is lower the level of the cliff.
Hence we take the minus sign.
Ans. 1. The stone is in the air for 5 second.
        2. The height of the cliff 52.5 m.


ไม่มีความคิดเห็น:

แสดงความคิดเห็น