วันอังคารที่ 25 มีนาคม พ.ศ. 2557

Physics;Flow rate, high school


Main Menu

Problem# h2phy1 - Pressure converted inside the Aorta 
Problem# h2phy2 - Pressure inside vein
Problem# h2phy3 - Pressure on the floor
Problem# h2phy4 - Pressure under the sea
Problem# h2phy5 - Pressure between oil and water
Problem# h2phy6 - Buoyant Force
Problem# h2phy7 - Flow rate; area vs velocity

The stream of water emerging from a faucet
"necks down" as it falls. The cross sectional area
Ao  is 1.2 cm2, and A is 0.35 cm2.  The two levels
are seperated by a vertical distance h=45 mm.
At what rate does water flow from the tap?

Strategy - the rule "Must have" of Mr.Zhang ®
Flow Rate Equations;
Flow Rate (Q) = Area x Velocity     → (1)
   = AV     
V2 = U2+2gs     → (2)
   = Vo2+2gs


Solution
Compute the initial velocity ;
From equation (1) ;
AoVo = AV   
AoVo
A
=V     → (3)


We bring equation(3) substitue in equation(2) ;



The Volume flow rate is [R]=AoVo
R=1.2 cm2x28.6 cm/s
Ans.  Water flow from the tap 34 cm3/s


Water falls from a tap,whether its speed increases or not?

If "yes", why?





Brake Booster

วันจันทร์ที่ 24 มีนาคม พ.ศ. 2557

physics fluid buoyant force


Main Menu

Problem# h2phy1 - Pressure converted inside the Aorta 
Problem# h2phy2 - Pressure inside vein
Problem# h2phy3 - Pressure on the floor
Problem# h2phy4 - Pressure under the sea
Problem# h2phy5 - Pressure between oil and water
Problem# h2phy6 - Buoyant Force


The density of fluid "A" is 1.2 times of density fluid "B".
When we bring an object lower into the liquid "B", and
find that volume of the object sunk down is 0.6 times of total volume.
If we take this object lower into the liquid "A", and sunk down, what is
the ratio of lower portion into liquid "A" comparing with the total volume?

Strategy - the rule "Must have" of Mr.Zhang ®
Fb= ρvg

Solution
Consider, force acts against object when 1st. lowering into the “B” liquid ;
ΣFup=ΣFdown
Fb=mg
ρbg(0.6V)=mg
ρb(0.6V)=m     → (1)

Consider, force acts against object when 2nd. lowering into the “A” liquid ;
ΣFup=ΣFdown
Fb=mg

We represents Vx  with the portion which sunk down into liquid "A"
ρag(vx)=mg     → (2)

From the problem gives ρa=1.2ρb,and we also take the
equation(1) substitue in equation(2) , therefore,
1.2ρbg(vx)=0.6ρbvg
1.2ρb(vx)=0.6ρbv
1.2(vx)=0.6v

vx=
0.6v
1.2
vx=0.5v
Ans.  The ratio of lower portion into liquid "A" comparing with the total volume is 0.5v

Brake Booster

วันศุกร์ที่ 21 มีนาคม พ.ศ. 2557

Pressure between oil and water


Main Menu

Problem# h2phy1 - Pressure converted inside the Aorta 
Problem# h2phy2 - Pressure inside vein
Problem# h2phy3 - Pressure on the floor
Problem# h2phy4 - Pressure under the sea
Problem# h2phy5 - Pressure between oil and water

The U-tube contains water of density&nbspρw in the right arm
and oil of unknown density ρx in the left.   Measurement gives
L = 135 mm. and d = 12.3 mm. What is the density of the oil ?

Strategy - the rule "Must have" of Mr.Zhang ®
Interface area is joint of the two substances.
P = (Po) + (Pg)
Absolute pressure = Atmospheric pressure + Gauge pressure
 
    Material or Object        Density (kg/m3)    
Water: 20 οC and 1 atm0.998x103
 
1 atm = 760 mmHg = 760 torr = 29.9 in.Hg
=101.325 kPa = 14.7 lb/in.2

Solution

Pint = Po +&nbspρwgl          (right side)  →(1)
Pint = Po +&nbspρoilg(d+l)    (left side)  →(2)
(1)=(2);   Po +&nbspρwgl = Po +&nbspρoilg(d+l)
    ρwgl = ρoilg(d+l)
    ρwl = ρoil(d+l)
    (ρw)/(d+l) = ρoil


∴The density of the oil is 916.5 kg/m3


Brake Booster

วันพฤหัสบดีที่ 20 มีนาคม พ.ศ. 2557

Pressure under the water


Main Menu

Problem# h2phy1 - Pressure converted inside the Aorta 
Problem# h2phy2 - Pressure inside vein
Problem# h2phy3 - Pressure on the floor
Problem# h2phy4 - Pressure under the sea


An enterprising diver reasons that if a typical 20 cm.
long snorkel tube works, a 6.0 m. long tube should
also. If he foolishly uses such a tube, what is the pressure
different Δp between the external pressure
on him and the air pressure in his lungs? Why is he in danger?

Strategy - the rule "Must have" of Mr.Zhang ®
Absolute pressure (P)
The difference between absolute pressure and atmospheric pressure is
called gauge pressure.
P =  (Pg) + (Po)
Absolute pressure - Atmospheric pressure = Gauge pressure
 
    Material or Object        Density (kg/m3)    
Water: 20 οC and 1 atm0.998x103
Sea water: 20 οC and 1 atm1.024x103
 
1 atm = 760 mmHg = 760 torr = 29.9 in.Hg
=101.325 kPa = 14.7 lb/in.2

Solution

The diver at depth L = 6.0 m without the snorkel tube. The external pressure
on him is given by ; P =  Po + ρgh
ΔP=P-PogL ; because L=h
    =(1000 kg/m3)(9.8 m/s2)(6.0m)
    =5.9x104 Pa


∴The pressure difference is about 0.6 atm, is sufficient to collapse
the lungs and force the still pressurized blood into them,a process known
lung squeeze.
"thoracic squeeze, also called Lung Squeeze, compression of the lungs and thoracic (chest)
cavity that occurs during a breath-holding dive under water. During the descent, an increase
in pressure causes air spaces and gas pockets within the body to compress."
credited : Britannica


Brake Booster

วันพุธที่ 19 มีนาคม พ.ศ. 2557

Physics-High-school-Fluid



Main Menu

Problem# h2phy1 - Pressure inside the Aorta 
Problem# h2phy2 - Pressure on the floor



A living room has floor dimension of 3.5 m and 4.2 m and height of 2.4 m.
a. What does the air in the room weight?
b. What force does the atmosphere exert on the floor of the room?

Strategy - the rule "Must have" of Mr.Zhang ®
material for solving this problem ; (1) w=mg    (2) m=ρv    (3) ρ=F⊥/A
    Material or Object        Density (kg/m3)    
Air: 20 οC and 1 atm1.21

Solution

a) The air in the room weighs;
 w=mg    →(1)
 m=ρv    →(2)
We take (2) substitue in (1) ∴  W=ρairvg
∴  W = (1.21 kg/m3)(3.5 m x 4.2 m x 2.4 m)(9.8 m/s2
∴  W = 418 kg m/s2
∴  W = 418 N
Ans.   ∴The air in the room weighs 418 N

b) What force does the atmosphere exert on the floor of the room?
 ρ=F⊥/A  ρatm=F⊥/A
 F⊥=ρatmA
 F⊥=1.01x105 N/m2)(3.5 m x4.2 m)
 F⊥=1.5x106 N
Ans.   ∴The atmosphere exerts 1.5x106 N on the floor of the floor



Physics high school-fluid



Main Menu




Problem# h2phy2 - Pressure on the floor
Problem# h2phy1 - Blood Pressure inside the Aorta


The average gauge pressure in the human aorta is about 100 mmHg.
Convert this average blood pressure to pascals.

Strategy - the rule "Must have" of Mr.Zhang ®
memorized (1)Atmospheric pressure,(2)Gauge pressure,(3)Absolute pressure.
Atmospheric pressure (Pa
Barometer is a measurement tool for measuring air pressure. Barometers measure
the current air pressure at a particular location in "inches of mercury" or in "millibars" (mb).
How much pressure are you under? Earth's atmosphere is pressing against each square inch of
you with a force of 1 kilogram per square centimeter (14.7 pounds per square inch).
1 atm is calculated by formulae pHggh    →  pHg=13.6x10 3 kg/m3
Therefore,
13.6x103 kg/m3x9.8 m/s2x0.76 m.=1.01325x105Nm-2 =1.01325x105Pa = 1 atm
1 atm = 760 mmHg = 760 torr = 29.9 in.Hg
=101.325 kPa = 14.7 lb/in.2
Gauge pressure (Pg) is the pressure according to the liquid substance only,at
the height level point "h", and it can be calculated by the liquid weight.
We calculate the gauge pressure with pgh
Absolute pressure (P)
The difference between absolute pressure and atmospheric pressure is
called gauge pressure.
P =  (Pg) + (Pa)
Absolute pressure - Atmospheric pressure = Gauge pressure

Solution



Ans.   The average blood pressure is converted to 13.3 kPa


Brake Master Cylinder

วันจันทร์ที่ 17 มีนาคม พ.ศ. 2557

brake-shoe-physics-ฟิสิกส์มัธยมปลาย-ฟิสิกส์ ม.5



Main Menu





Problem h2b1: Brake system;Disc brake

Problem h2b2: Brake system;Drum brake

Consider the automobile hydraulic system shown in Figure a
A force of 100 N is applied to the brake pedal, which acts on the cylinder-called
the master-through a lever. The master cylinder has a diameter
0.500 cm. The slave cylinder (Drum brake) has a diameter 2.50 cm.
Calculate the force at each of the slave cylinders.

Strategy
Force is increased by the simple lever, and again by the hydraulic system.

Pascal's law - pressure applied anywhere to a body of fluid causes a force to be
transmitted equally in all directions; the force acts at right angles to any surface
in contact with the fluid; "the hydraulic press is an application of Pascal's law"



Solution

1. We take "O" to be fulcrum to find F1


Then 500 N. is exerted on the master cylinder.
Pressure created in the master cylinder is transmitted to four so-called slave cylinders.
Then we calculate the Force at the slave cylinders each.
The circle cross sectional area of master and slave cylinder are A1  A2  respectively.
Hence we can find the force  F2  at the brake drum.

Ans.   The force at each of the slave cylinders is 1.25 x 104 N.